THE APPLICATION OF RIDGE REGRESSION METHODS WHEN COMBINING FORECASTS
نویسندگان
چکیده
منابع مشابه
Ridge Regression Estimator: Combining Unbiased and Ordinary Ridge Regression Methods of Estimation
Statistical literature has several methods for coping with multicollinearity. This paper introduces a new shrinkage estimator, called modified unbiased ridge (MUR). This estimator is obtained from unbiased ridge regression (URR) in the same way that ordinary ridge regression (ORR) is obtained from ordinary least squares (OLS). Properties of MUR are derived. Results on its matrix mean squared er...
متن کاملApplication of Ridge Regression to Multicollinear Data
The main thrust of this paper is to investigate the ridge regression problem in multicollinear data. The properties of ridge estimator are discussed. Variance inflation factors, eigen values and standardization problem are studied through an empirical comparison between OLS and ridge regression method by regressing number of persons employed on five variables. Methods to choose biasing paramete...
متن کاملCombining Country-Specific Forecasts when Forecasting Euro Area Macroeconomic Aggregates
European Monetary Union (EMU) member countries’ forecasts are often combined to obtain the forecasts of the Euro area macroeconomic aggregate variables. The aggregation weights which are used to produce the aggregates are often considered as combination weights. This paper investigates whether using different combination weights instead of the usual aggregation weights can help to provide more ...
متن کاملCombining forecasts
To improve forecasting accuracy, combine forecasts derived from methods that differ substantially and draw from different sources of information. When feasible, use five or more methods. Use formal procedures to combine forecasts: An equal-weights rule offers a reasonable starting point, and a trimmed mean is desirable if you combine forecasts resulting from five or more methods. Use different ...
متن کاملCombining linear regression models: When and how?
Model combining (mixing) methods have been proposed in recent years to deal with uncertainty in model selection. Even though advantages of model combining over model selection have been demonstrated in simulations and data examples, it is still unclear to a large extent when model combining should be preferred. In this work, firstly, an instability measure to capture the uncertainty of model se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Finance: Theory and Practice
سال: 2018
ISSN: 2587-7089,2587-5671
DOI: 10.26794/2587-5671-2018-22-4-6-17